Rectangular Scott-type Permanents

نویسنده

  • Christian Krattenthaler
چکیده

— Let x1, x2, . . . , xn be the zeroes of a polynomial P (x) of degree n and y1, y2, . . . , ym be the zeroes of another polynomial Q(y) of degree m. Our object of study is the permanent per(1/(xi − yj))1≤i≤n,1≤j≤m, here named “Scott-type” permanent, the case of P (x) = x − 1 and Q(y) = y + 1 having been considered by R. F. Scott. We present an efficient approach to determining explicit evaluations of Scott-type permanents, based on generalizations of classical theorems by Cauchy and Borchardt, and of a recent theorem by Lascoux. This continues and extends the work initiated by the first author (“Généralisation de l’identité de Scott sur les permanents,” to appear in Linear Algebra Appl.). Our approach enables us to provide numerous closed form evaluations of Scott-type permanents for special choices of the polynomials P (x) and Q(y), including generalizations of all the results from the above mentioned paper and of Scott’s permanent itself. For example, we prove that if P (x) = x − 1 and Q(y) = y + y + 1 then the corresponding Scott-type permanent is equal to (−1)n!. Résumé. — Soient x1, x2, . . . , xn les zéros d’un polynôme P (x) de degré n et y1, y2, . . . , ym les zéros d’un autre polynôme Q(y) de degré m. Notre objet d’étude est le permanent per(1/(xi − yj))1≤i≤n, 1≤j≤m, appelé ici permanent de type Scott. Le cas de P (x) = x − 1 et Q(y) = y + 1 a été considéré par R. F. Scott. Nous présentons une approche efficace pour déterminer les évaluations explicites des permanents de type Scott, basée sur des généralisations des théorèmes classiques de Cauchy et Borchardt, et d’un théorème récent de Lascoux. La présente étude prolonge le travail du premier auteur (“Généralisation de l’identité de Scott sur les permanents,” à apparâıtre dans Linear Algebra Appl.). Notre approche nous permet de fournir de nombreuses évaluations explicites des permanents de type Scott pour des choix spéciaux des polynômes P (x) et Q(y), y compris des généalisations de tous les résultats de l’article mentionné ci-dessus et du permanent de Scott lui-même. Par exemple, nous prouvons que si P (x) = x − 1 et Q(y) = y + y + 1 alors le permanent correspondant de type Scott est égal à (−1)n!.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On evaluation of permanents

where the summation is over all injections σ from M . = {1, 2, . . . ,m} to N . = {1, 2, . . . , n}. While studies on permanents – since their introduction in 1812 by Binet [3] and Cauchy [5] – have focused on matrices over fields and commutative rings, we generally only assume the entries are from some semiring, that is, multiplication need not commute and additive inverses need not exist. In ...

متن کامل

Permanents of Positive Semidefinite Hermitian Matrices

In this project, we are interested in approximating permanents of positive semidefinite Hermitian matrices. Specifically, we find conditions on positive semidefinite Hermitian matrices such that we can generalize the algorithm described in Sections 3.6 3.7 of [1] to matrices satisfying these conditions.

متن کامل

Generalizing and derandomizing Gurvits's approximation algorithm for the permanent

time, and approximates Per (A) to within ±ε ‖A‖ additive error. A major advantage of Gurvits’s algorithm is that it works for arbitrary matrices, not just for nonnegative matrices. This makes it highly relevant to quantum optics, where the permanents of boundednorm complex matrices play a central role. (In particular, n × n permanents arise as the transition amplitudes for n identical photons.)...

متن کامل

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

Comparison of Stochastic Point Process Models of Rainfall in Singapore

Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000